Long test (and other downstream analyses) for detecting admixture outliers

STEP 1:
Open R, the .R script provided (LongTest_Rcode.R), and load the data (ConGen_LongTest_data.txt).  

Note the file path I provide in the code won’t work on your machine – you can edit directly, use the file.choose() command, or you can use the data import function in R Studio (hint – use R Studio!).  

One other note – the calculations for the Long test require intermediate allele frequencies (i.e., no values of 0 or 1).  The allele frequencies in your file have been adjusted to avoid those values, by using Bayesian posterior estimates of allele frequencies with a flat prior.  


STEP 2:  
Let’s run through the simple .r script for our first population (Finley Creek – a tributary to the Jocko River just south of here).  The Long test calculates the observed variance in allele frequencies across all loci to build a neutral expectation for the distribution of allele frequencies (i.e. introgression) across loci.  For each locus, the test then provides a residual chi-square and a p-value that indicate whether the locus differs significantly from the neutral expectation.  Note that loci can differ significantly by having either a higher or lower introduced allele frequency than expected.


STEP 3: 
Then populations 2 and 3 (Cyclone Creek and Hay Creek – tributaries to the North Fork Flathead River (about 50 miles north of here).  Check out your output file to make sure the results have all been recorded.  


STEP 4:  
Now we have three-population specific p – values for each locus.  Let’s combine information across loci with Fisher’s combined test.  Fisher’s combined test combines results from multiple independent tests that are addressing the same null hypothesis (in this case – that locus specific allele frequencies are a function of overall admixture, sampling variation, and genetic drift).  Simple to execute!


STEP 5:
We now have 9380 p-values, which is to say, a whole truckload.  Multiple tests no longer satisfy our statistical criterion for type I error (false positives) so a correction is needed.  With genomic data sets, simple corrections such as the Bonferroni are overly restrictive (conservative) potentially leading to type II error (false negative).  Instead, let’s calculate a false discovery rate first in excel to show you the basic procedure (yes, antiquated but effective) and then in one simple r command.  

Here’s a simple description taken directly from Narum 2006 (Conservation Genetics)




[image: Macintosh HD:Users:ryankovach1:Desktop:Narum 2006 ConGen.pdf]




EXERCISE (if time now, or in the evening):
[bookmark: _GoBack]Look through the admixture outliers that we identified and describe any general patterns?  Are there any consistent patterns of selection, loci of interest, etc.?  Report your results back and discuss the interpretation of them in the evening session (approximately 9 PM).
image1.emf



error is quickly increased at the rate of 1 ) (1 ) a)k;
where k is the number of hypothesis tests per-
formed. For example, if 10 hypothesis tests
are performed at a=0.05, the EW Type I error is
1 ) (0.95)10=0.401. Frequently, Bonferroni cor-
rections (Rice 1989) have been used to control
experiment-wise a ðaEWÞ at a predetermined level
(i.e. 0.05) using the formula: aEW=a/k. The Bon-
ferroni corrected critical value for the example with
k=10 and a=0.05, would be 0.05/10=0.005.



Bonferroni corrections are effective at controlling
aEW, but the correction is very conservative and
power (the proportion of the false null hypotheses
that are correctly rejected) is greatly reduced
(Hochberg 1988; Ryman and Jorde 2001; Garcia
2004). While many studies focus on reducing Type I
error with Bonferroni corrections, reducing Type II
error (or increasing power) is often neglected
in multiple comparison tests. Sequential Bonferroni
corrections (‘‘step-up’’ Holm 1979; Rice 1989; ‘‘step-
down’’ Hochberg 1988) provide some improvements
to power, but assume independence among tests.
Additional multiple comparison procedures have
been reviewed (e.g., Ludbrook 1991; Ludbrook
1998), but the most powerful apply only to limited
numbers of tests (<five tests;Dunn-Sidak), normally
distributed data (Tukey-Kramer), or independent
tests (Ryan-Peritz-Welsch). This highlights the need
for a multiple comparison procedure in conservation
genetics that can accommodate large numbers of
potentially dependent tests while balancing risks
of Type I and II errors. Failure to reject the null
hypothesis when it is false can lead to conservation
management strategies that are detrimental rather
than effective at preserving genetic diversity of
species. Thus, measures to reduce Type II error are
necessary to adequately determine significant genetic
structure among populations.



In this study I evaluated alternatives to the
Bonferroni method for determining critical values of
multiple comparison tests in studies of conservation
genetics. The alternative methods focus around
the concept of false discovery rate (FDR) initially
presented by Benjamini and Hochberg (1995).



Methods



Alternative corrections for multiple comparison tests



Benjamini and Hochberg (1995) have presented an
alternative multiple testing procedure called False



DiscoveryRate (FDR).FDRcalls for controlling the
expected proportion of falsely rejected hypotheses
rather than controlling all falsely rejected hypotheses
as in aEW. FDR procedures have been successfully
used in situationswithvery largenumbersofpairwise
tests such as microarray gene expression (Reiner
et al. 2003) and neuroimaging (Genovese et al.
2002). The FDR procedure presented by Benjamini
and Hochberg (1995) is here-to-for referred to as the
B–H method and is performed as follows:
(1) Order p-values p1 # p2 # $ $ $ # pk where



k=number of pairwise tests
(2) Starting with the largest p-value, find the first



individual p-value (pi) that satisfies: pi £ i/k *
a where i = ith observation



(3) The pi that satisfies the condition above
becomes the critical value for the experiment.
The procedure is illustrated in the following



example: k=15 with ordered p(i)s of 0.0001, 0.0010,
0.0062, 0.0101, 0.0214, 0.0227, 0.0273, 0.0292,
0.0311, 0.0323, 0.0441, 0.0490, 0.0573, 0.1262,
0.5794. Using the FDR procedure with a=0.05,
each p(i) is compared sequentially with i/15*0.05,
starting with p(15). The first p-value to satisfy p i # i/
k * a is p(10) since p(10)=0.032 £ 10/15 * 0.05 =
0.0333. Thus pairwise tests in the experiment with p-
values less than or equal to 0.0333 reject the null
hypothesis. The gain in power with the B–Hmethod
FDR over the Bonferroni procedure (critical values
of 0.0333 and 0.003 respectively in this example) are
substantial. While proportion of false discoveries is
controlled, the EW Type I error is not controlled
with the B–H method FDR in this example since
some hypothesis tests were false (i.e., ‘‘weak con-
trol’’ of aEW).



Several modifications of the B–H method FDR
have been presented (e.g., Storey 2002; Bickel
2004), but many have narrow application or are
difficult to adopt to tests of homogeneity of allele
frequency data. I focus on a modified FDR pro-
cedure by Benjamini and Yekutieli (2001) referred
to as the B–Y method from this point forward.
The B–Y method is acceptable with dependent
tests and is calculated with a predetermined a that
is divided by a quantity related to the number of
hypothesis tests. In the B–Y method, the critical
value is determined by:



a= R
k



i¼1
ð1=iÞ
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